MINISTÈRE DE L'ÉDUCATION NATIONALE ET DE L'ALPHABÉTISATION

INSPECTION GÉNÉRALE

DIRECTION DE LA PÉDAGOGIE ET DE LA FORMATION CONTINUE REPUBLIQUE DE CÔTE D'IVOIRE Union-Discipline-Travail ***********

DOMAINE DES SCIENCES

PROGRAMME ÉDUCATIF ET GUIDE D'EXÉCUTION

MATHÉMATIQUES

Terminale D

MOT DE MADAME LA MINISTRE DE L'ÉDUCATION NATIONALE

L'école est le lieu où se forgent les valeurs humaines indispensables pour le développement harmonieux d'une nation. Elle doit être en effet le cadre privilégié où se cultivent la recherche de la vérité, la rigueur intellectuelle, le respect de soi, d'autrui et de la nation, l'amour pour la nation, l'esprit de solidarité, le sens de l'initiative, de la créativité et de la responsabilité.

La réalisation d'une telle entreprise exige la mise à contribution de tous les facteurs, tant matériels qu'humains. C'est pourquoi, soucieux de garantir la qualité et l'équité de notre enseignement, le Ministère de l'Éducation Nationale s'est toujours préoccupé de doter l'école d'outils performants et adaptés au niveau de compréhension des différents utilisateurs.

Les programmes éducatifs et leurs guides d'exécution que le Ministère de l'Éducation Nationale a le bonheur de mettre aujourd'hui à la disposition de l'enseignement de base est le fruit d'un travail de longue haleine, au cours duquel différentes contributions ont été mises à profit en vue de sa réalisation. Ils présentent une entrée dans les apprentissages par les situations en vue de développer des compétences chez l'apprenant en lui offrant la possibilité de construire le sens de ce qu'il apprend.

Nous présentons nos remerciements à tous ceux qui ont apporté leur appui matériel et financier pour la réalisation de ce programme. Nous remercions spécialement Monsieur Philippe JONNAERT, Professeur titulaire de la Chaire UNESCO en Développement Curricula ire de l'Université du Québec à Montréal qui nous a accompagnés dans le recadrage de nos programmes éducatifs.

Nous ne saurions oublier tous les Experts nationaux venus de différents horizons et qui se sont acquittés de leur tâche avec compétence et dévouement.

A tous, nous réitérons la reconnaissance du Ministère de l'Éducation Nationale.

Nous terminons en souhaitant que tous les milieux éducatifs fassent une utilisation rationnelle de ces programmes éducatifs pour l'amélioration de la qualité de notre enseignement afin de faire de notre pays, la Côte d'Ivoire un pays émergent à l'horizon 2020, selon la vision du Chef de l'État, SEM Alassane OUATTARA.

Merci à tous et vive l'École Ivoirienne!

Programme de Terminale D

Page 2 sur 42

andia CAMARA

LISTE DES SIGLES

A.P.	Arts Plastiques
A.P.C.	Approche Par Compétence
A.P.F.C.	Antenne de la Pédagogie et de la Formation Continue
All.	Allemand
Angl.	Anglais
C.A. F.O.P	Centre d'Animation et de Formation Pédagogique
C.M.	Collège Moderne
C.N.F.P.M.D.	Centre National de Formation et de Production du Matériel Didactique
C.N.M.S	Centre National des Matériels Scientifiques
C.N.R.E	Centre National des Ressources Educatives
C.O.C	Cadre d'Orientation Curriculaire
D.D.E.N.A	Direction Départementale de l'Education Nationale et de l'Alphabétisation
D.E.U.G.	Diplôme d'Etude Universitaire Générale
D.R.E.N.A	Direction Régionale de l'Education Nationale et de l'Alphabétisation
D.P.F.C.	Direction de la Pédagogie et de la Formation Continue
D.R.H.	Direction des Ressources Humaines
E.D.H.C.	Education aux Droits de l'Homme et à la Citoyenneté
E.P.S.	Education Physique et Sportive
Esp.	Espagnol
Fr	Français
FOAD	Formation à Distance
Hist-Géo	Histoire et Géographie
I.G.E.N.	Inspection Générale de l'Education Nationale
I.O.	Instituteur Ordinaire
I.A.	Instituteur Adjoint
L.M.	Lycée Moderne
L.Mun.	Lycée Municipal
M.E.N.A	Ministère de l'Education Nationale et de l'Alphabétisation
Math.	Mathématique
S.V.T.	Sciences de la Vie et de la Terre
P.P.O.	Pédagogie Par Objectif
PHYS-CHIMIE	Physique Chimie
U.P.	Unité Pédagogique

TABLE DES MATIÈRES

Mathématiques Terminale D

N°	RUBRIQUES	PAGES
1.	MOT DE MME LA MINISTRE	
2.	LISTE DES SIGLES	
3.	TABLE DES MATIÈRES	
4.	INTRODUCTION	
5.	PROFIL DE SORTIE	
6.	DOMAINE DES SCIENCES	
7.	REGIME PEDAGOGIQUE	
8.	TABLEAU SYNOPTIQUE	
9.	CORPS DU PROGRAMME EDUCATIF	
10.	GUIDE D'EXÉCUTION	
11.	PROGRESSION	
12.	PROPOSITIONS DE CONSIGNES, SUGGESTIONS PEDAGOGIQUES ET	
	MOYENS	
13.	SCHEMA DU COURS APC	
14.	EVALUATION EN APC	

INTRODUCTION

Dans son souci constant de mettre à la disposition des établissements scolaires des outils pédagogiques de qualité appréciable et accessibles à tous les enseignants, le Ministère de l'Éducation nationale vient de procéder au toilettage des Programmes d'Enseignement.

Cette mise à jour a été dictée par :

- La lutte contre l'échec scolaire :
- La nécessité de cadrage pour répondre efficacement aux nouvelles réalités de l'école ivoirienne ;
- Le souci de garantir la qualité scientifique de notre enseignement et son intégration dans l'environnement ;
- L'harmonisation des objectifs et des contenus d'enseignement sur tout le territoire national.

Ces programmes éducatifs se trouvent enrichis des situations. Une situation est un ensemble de circonstances contextualisées dans lesquelles peut se retrouver une personne. Lorsque cette personne a traité avec succès la situation en mobilisant diverses ressources ou habilités, elle a développé des compétences : on dira alors qu'elle est compétente.

La situation n'est donc pas une fin en soi, mais plutôt un moyen qui permet de développer des compétences ; ainsi une personne ne peut être décrétée compétente à priori.

Chaque programme définit pour tous les ordres d'enseignement, le profil de sortie, le domaine disciplinaire, le régime pédagogique et il présente le corps du programme de la discipline.

Le corps du programme est décliné en plusieurs éléments qui sont :

- La compétence ;
- Le thème ;
- La lecon :
- Un exemple de situation ;
- Un tableau à deux colonnes comportant respectivement :
 - Les habiletés : elles correspondent aux plus petites unités cognitives attendues de l'élève au terme d'un apprentissage ;
 - Les contenus d'enseignement : ce sont les notions à faire acquérir aux élèves

Par ailleurs, les disciplines du programme sont regroupées en cinq domaines :

- le **Domaine des langues** comprenant le Français, l'Anglais, l'Espagnol et l'Allemand ;
- le Domaine des sciences et technologie regroupant les Mathématiques, la Physique-Chimie, les Sciences de la Vie et de la Terre et les TICE :
- le **Domaine de l'univers social** concernant l'Histoire-Géographie, l'Éducation aux Droits de l'Homme et à la Citoyenneté et la Philosophie ;
- le **Domaine des arts** comportant les Arts Plastiques et l'Éducation Musicale :
- le **Domaine du développement éducatif, physique et sportif** prenant en compte l'Éducation Physique et Sportive.

Toutes ces disciplines concourent à la réalisation d'un seul objectif final, celui de la formation intégrale de la personnalité de l'enfant. Toute idée de cloisonner les disciplines doit, de ce fait, être abandonnée.

L'exploitation optimale des programmes recadrés nécessite le recours à une pédagogie fondée sur la participation active de l'élève, le passage du rôle de l'enseignant, de celui de dispensateur des connaissances vers celui d'accompagnateur de l'élève.

I. PROFIL DE SORTIE

A la fin du second cycle de l'enseignement secondaire de la série C (Sciences Mathématiques), l'élève doit avoir acquis des compétences lui permettant de traiter des situations relatives :

- aux **calculs algébriques** (Ensemble de nombres réels, Polynômes et fractions rationnelles, Equations et inéquations dans \mathbb{R} et dans $\mathbb{R} \times \mathbb{R}$, Systèmes linéaires, Nombres complexes)
- aux fonctions (Fonctions et applications, Fonctions et Transformations du plan, Limite et continuité, Dérivation, Etude et représentation graphique de fonction, Suites numériques, Primitives, Fonctions logarithmes, Fonctions exponentielles et puissances, Calcul intégral, Suites numériques, Équations différentielles)
- à l'organisation et au traitement des données (Statistiques à une variable, Statistiques à deux variables)
- à la **modélisation d'un phénomène aléatoire** (Dénombrement, Probabilités)
- à la **géométrie du plan** (Vecteurs et points du plan ; Produit scalaire, Droites et cercles dans le plan, Angles inscrits ; Angles orientés et trigonométrie, Géométrie analytique du plan, Barycentre)
- à la **géométrie de l'espace** (Droites et plans de l'espace, Vecteurs de l'espace, Orthogonalité dans l'espace, Géométrie analytique dans l'espace)
- aux **transformations du plan** (Isométries du plan, Similitudes directes du plan, Nombres complexes et transformations du plan)
- à l'arithmétique.

II. DOMAINE DES SCIENCES

Le domaine des sciences et technologie est composé de quatre disciplines :

- les mathématiques
- la physique-chimie
- les sciences de la vie et de la terre
- les technologies de l'information et de la communication à l'école (TICE).

Les mathématiques fournissent les outils indispensables à l'étude des autres disciplines du domaine. En effet, les biologistes par exemple étudient l'évolution de certains micro-organismes qui se multiplient rapidement en ayant recourt à des modèles mathématiques.

Les mathématiques sont utilisées en physique, notamment en électricité et en mécanique.

III.REGIME PEDAGOGIQUE

En Côte d'Ivoire, l'année scolaire comporte 32 semaines.

Discipline	Nombre d'heures/semaine	Nombre d'heures/année	Pourcentage par rapport à l'ensemble des disciplines
MATHEMATIQUE	6	<mark>192</mark>	18,18%

IV. TABLEAU SYNOPTIQUE DES PROGRAMMES RECADRÉS DE MATHÉMATIQUES - SÉRIE D

COMPÉTENCE 1

Traiter une situation relative aux calculs algébriques et aux fonctions

N°	THÈMES	SECONDE C	PREMIÈRE D	TERMINALE D
1.	Thème 1:	Leçon 1 : Ensemble des	Leçon 1 : Équations et	Leçon : Nombres
	Calculs	nombres réels	inéquations du	complexes
	algébriques	Leçon 2 : Polynômes et	second degré	
		fractions rationnelles	dans $\mathbb R$	
		Leçon 3 : Inéquations et	Leçon 2 : Systèmes	
		inéquations dans ${\mathbb R}$	d'équations	
		Leçon 4 : Inéquations dans	linéaires dans	
		$\mathbb{R} \times \mathbb{R}$	\mathbb{R}^2 et dans \mathbb{R}^3	
2.	Thème 2 :	Leçon 1 : Généralités sur les	Leçon 1 : Généralités	Leçon 1 : Limites et
	Fonctions	fonctions	sur les	continuité
		Leçon 2: Étude de fonctions	fonctions	Leçon 2 : Dérivabilité et
		élémentaires	Leçon 2 : Limites et	étude de fonctions
			continuité	Leçon 3 : Primitives
			Leçon 3 : Extension	Leçon 4: Fonctions
			de la notion	logarithmes
			de limite	Leçon 5: Fonctions
			Leçon 4 : Dérivation	exponentielles et
			Leçon 5 : Étude et	fonctions
			représentation	puissances
			graphique d'une	Leçon 6 : Calcul Intégral
			fonction	Leçon 7 : Suites
			Leçon 6 : Suites	numériques
			numériques	Leçon 8 : Équations
				différentielles

COMPÉTENCE 2

Traiter une situation relative à l'organisation et au traitement de données.

N°	THÈMES	SECONDE C	PREMIÈRE D	TERMINALE D
1.	Thème 1 : Organisation et traitement de données	Leçon : Statistique à une variable	Leçon : Statistique à une variable	Leçon : Statistique à deux variables
2.	Thème 2 : Modélisation d'un phénomène aléatoire		Leçon 1 : Dénombrement Leçon 2 : Probabilité	Leçon : Probabilité conditionnelle et variable aléatoire

COMPÉTENCE 3

Traiter une situation relative à la géométrie du plan, à la géométrie de l'espace et aux transformations du plan.

N°	THÈME	SECONDE C	PREMIÈRE D	TERMINALE D
1.	Thème 1 :	Leçon 1 : Vecteurs et	Leçon 1 : Barycentre	Leçon : Nombres
	Géométrie du	points du plan	Leçon 2 : Angles	complexes et
	plan	Leçon 2 : Produit	orientés et	géométrie du plan
		scalaire	trigonométrie	
		Leçon 3 : Angles inscrits		
		Leçon 4 : Angles		
		orientés et		
		trigonométrie		
2.	Thème 2 :	Leçon : Droites et plans	Leçon : Orthogonalité	
	Géométrie de	de l'espace	dans l'espace	
	l'espace			
3.	Thème 3 :	Leçon 1 : Utilisation des	Leçon : Composées de	
	Transformations	symétries et	transformations	
	du plan	translations		
		Leçon 2 : Homothéties		
		Leçon 3 : Rotations		

CORPS DU PROGRAMME ÉDUCATIF MATHÉMATIQUES - TERMINALE D

COMPÉTENCE 1

Traiter une situation relative aux calculs algébriques et aux fonctions

THÈME 1: CALCULS ALGÉBRIQUES

Leçon 1.: Nombres complexes

Exemple de situation d'apprentissage

Des élèves d'une classe de terminale s'interrogent sur ce qu'ils viennent de découvrir à l'exposition sur les journées mathématiques organisées par la Société Mathématiques de Côte d'Ivoire (SMCI). Dans un stand sur les équations, on peut lire :

Au début du XVIème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du $3^{\text{ème}}$ degré $x^3 + px = q$:

$$x = \sqrt[3]{\frac{q - \sqrt{q^2 + 4p^3/27}}{2}} + \sqrt[3]{\frac{q + \sqrt{q^2 + 4p^3/27}}{2}}$$

À la fin du **XVI**ème siècle, le mathématicien Bombelli applique cette formule à l'équation $x^3 - 15x = 4$

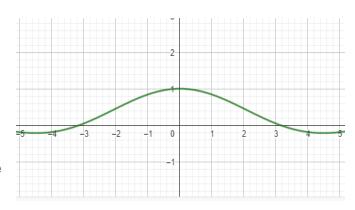
II obtient littéralement :
$$x = \sqrt[3]{2 - 11\sqrt{-1}} + \sqrt[3]{2 + 11\sqrt{-1}}$$
.

Les élèves sont intrigués par la notation $\sqrt{-1}$ car depuis la classe de troisième, ils savent que la racine carrée d'un nombre négatif n'existe pas. Leur professeur de mathématique explique qu'en mathématique, lorsqu'une équation n'a pas de solutions dans un ensemble, une démarche naturelle (et historique) consiste à en chercher dans un ensemble plus grand. L'ensemble numérique le plus grand que l'on a rencontré est $\mathbb R$. Pourtant, l'équation $x^2+1=0$ n'a pas de solutions dans $\mathbb R$. Il faut donc envisager un autre ensemble dans lequel cette solution existe.

Les élèves décident d'en savoir davantage sur ce nouvel ensemble.

HABILETÉS	CONTENUS	
	- la partie réelle ; la partie imaginaire d'un nombre complexe	
Identifier	- la forme algébrique d'un nombre complexe	
	- la forme trigonométrique d'un nombre complexe non nul	
	- la forme exponentielle d'un nombre complexe non nul	
	- la définition du module d'un nombre complexe	
Connaître	- la définition d'un argument d'un nombre complexe non nul	
	- les propriétés relatives au module du produit et du quotient de deux nombres	
	complexes	

	- les propriétés relatives au module de l'inverse et de la puissance entière d'un
	nombre complexe - les propriétés relatives à un argument du produit et du quotient de deux nombres
	complexes
	- les propriétés relatives à un argument de l'inverse et de la puissance entière d'un
	nombre complexe
	- les propriétés relatives à la somme, au produit et au quotient de deux nombres
	complexes
	- la définition du conjugué d'un nombre complexe
	- les propriétés relatives au conjugué d'un nombre complexe
	- la propriété relative à l'égalité de deux nombres complexes
	- l'affixe d'un point ; d'un vecteur
	- le point image ; le vecteur image d'un nombre complexe
	- la définition d'une racine carrée d'un nombre complexe
	- la définition d'une racine $n^{i m eme}$ d'un nombre complexe non nul
	- les racines $n^{i en me}$ de l'unité
	- la formule de Moivre
	- les formules d'Euler
	- les caractérisations complexes d'un cercle ; d'une droite ; d'une demi-droite
	- la forme algébrique d'un nombre complexe
	- la forme la forme trigonométrique d'un nombre complexe non nul
	- la forme la forme exponentielle d'un nombre complexe non nul
D.//	- la partie réelle, la partie imaginaire d'un nombre complexe
Déterminer	- le conjugué d'un nombre complexe
	- le module et un argument d'un nombre complexe non nul
	- des lieux géométriques à l'aide des nombres complexes
	- les racines carrées d'un nombre complexe
	- les racines <i>n</i> -ièmes d'un nombre complexe non nul
Calculer	- la somme, le produit et le quotient de deux nombres complexes
Linforing	- la puissance d'un nombre complexe
Linéariser	- des puissances de $\cos x$ et $\sin x$
D	- une équation du second degré à coefficients complexes ainsi que des équations s'y
Résoudre	ramenant
	- une équation se ramenant du second degré à coefficients complexes
Placer	- les points images des racines n -ièmes d'un nombre complexe sur le cercle
	trigonométrique, connaissant l'une d'elles
Utiliser	- les formules de Moivre et d'Euler pour transformer des produits en somme dans
	des expressions trigonométriques
Traiter	- une situation faisant appel aux nombres complexes
	<u> </u>


THÈME 2: FONCTIONS

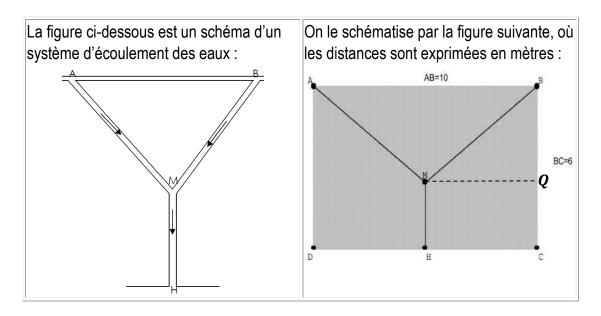
Leçon 2. : Limites et continuité d'une fonction

Exemple de situation d'apprentissage

Dans leur groupe de travail, des élèves d'une classe de terminale scientifique tracent, à l'aide d'une calculatrice graphique, la courbe représentative de la fonction $q: x \mapsto \frac{\sin{(x)}}{x}$.

Le graphique-ci contre donne la partie de la courbe obtenue sur l'intervalle [-5; 5]. Ils constatent que sur ce graphique, le nombre 0 qui n'est pas dans l'ensemble de définition de la fonction q a pour image 1. Pour comprendre ce fait, Ils cherchent à approfondir leurs connaissances sur les fonctions.

HABILETÉS	CONTENUS
11 .:e	- les notions de branches paraboliques de direction celle de (OI) ou celle de (OJ) dans un repère (O,I,J)
Identifier	- une racine n -ième d'un nombre positif
	- une puissance d'exposant rationnel
	- la propriété relative à la limite d'une fonction composée
	- la propriété relative à la limite d'une fonction monotone sur un intervalle ouvert
	- les propriétés relatives aux opérations sur les fonctions continues sur un intervalle
	- la propriété relative à la composée de deux fonctions continues sur un intervalle
	- les propriétés relatives à l'image d'un intervalle par une fonction continue :
Connaitre	en utilisant son tableau de variation
	en utilisant une méthode algébrique
	- le théorème des valeurs intermédiaires
	- les propriétés relatives aux fonctions continues et strictement monotones sur un intervalle
	- les méthodes de dichotomie et de balayage
	- les propriétés relatives aux puissances d'exposants rationnels
Noter	- une racine n -ième d'un nombre positif $(\sqrt[n]{x} \text{ ou } x^{\frac{1}{n}})$.
110101	- une puissance d'exposant rationnel $(x^{\frac{\nu}{q}})$.
	- la limite d'une fonction
	en utilisant les limites de référence
Déterminer	en utilisant une expression conjuguée
	en utilisant la définition d'un nombre dérivé
	en utilisant les propriétés de comparaison
	(minoration, majoration et encadrement)
	en utilisant une égalité remarquable
	- la limite d'une fonction composée


	 l'image d'un intervalle par une fonction continue en utilisant son tableau de variation en utilisant une méthode algébrique une valeur approchée d'une solution d'une équation le nombre de solutions d'une équation du type f(x) = k la formule explicite d'une bijection réciproque quand cela est possible un prolongement par continuité d'une fonction en un point
Représenter	- la courbe de la bijection réciproque d'une bijection dans un repère orthonormé
Interpréter	- graphiquement : $f \text{ \'etant une fonction telle que} : \lim_{x \to +\infty} f(x) = \pm \infty \left(\operatorname{resp} \lim_{x \to -\infty} f(x) = \pm \infty \right)$ • $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ • $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ • $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$ • $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$
Démontrer	 qu'une fonction f est une bijection d'un intervalle I sur un intervalle J dans le cas où f est continue et strictement monotone sur I. l'existence d'une unique solution de l'équation f (x) = m (m réel) sur un intervalle I, f étant continue et strictement monotone sur I l'existence d'une unique solution de l'équation f (x) = 0 sur un intervalle ouvert]a; b[, f étant continue et strictement monotone sur [a; b]
Traiter	- une situation faisant appel aux limites et à la continuité d'une fonction

Leçon 3 : Dérivabilité et étude de fonctions

Exemple de situation d'apprentissage

Un proviseur décide de mettre en place un système de collecte des eaux de pluie sur un mur aveugle, à l'arrière de la façade d'une classe du lycée.

Sur ce mur, de forme rectangulaire, deux tuyaux obliques doivent récupérer les eaux de pluie pour les déverser dans un tuyau vertical aboutissant à un réservoir.

Sur ce plan, (MH) est la médiatrice de [DC] et Q est le projeté orthogonal de M sur (BC).

On pose :
$$\theta = mes\widehat{BMQ}$$
; $\theta \in \left[0; \frac{\pi}{2}\right]$.

Le proviseur dans un souci de réduire les dépenses pour ce projet souhait déterminer la longueur minimale de tuyaux à utiliser. Informés du projet, les élèves de terminale modélisent la longueur totale des tuyaux par la fonction g définie par : $g(\theta) = 2MB + MH$, $\theta \in \left[0; \frac{\pi}{2}\right]$.

Ensemble, ils décident d'étudier cette fonction pour minimiser la longueur totale des tuyaux à utiliser.

HABILETÉS	CONTENUS
Connaître	- la définition d'une fonction dérivable à gauche (respectivement à droite) en un point - la définition des dérivées successives d'une fonction - les nouvelles notations des dérivées successives $\frac{df}{dx}$; $\frac{d^2f}{dx^2}$;; $\frac{d^nf}{dx^n}$ ($n \in \mathbb{N}^*$) - les propriétés relatives à la dérivabilité d'une fonction sur un intervalle - la propriété relative à la dérivée d'une fonction composée - les propriétés relatives à l'inégalité des accroissements finis (les 2 formes)
Noter	- un nombre dérivé à gauche (respectivement à droite) d'une fonction - les dérivées successives d'une fonction
Reconnaître	- graphiquement un point d'inflexion
Déterminer	- le signe d'une fonction en utilisant ses variations

	- le sens de variation d'une bijection réciproque d'une fonction f sur un intervalle J
	connaissant le sens de variation de f sur un intervalle I
	- le nombre dérivé de la fonction f^{-1} en un point y_0
	- un point d'inflexion d'une courbe représentative d'une fonction
	- des dérivées successives d'une fonction
Étudier	- la dérivabilité d'une fonction définie par intervalles en un point de raccordement
	- le nombre dérivé en un point d'une fonction composée
	- les dérivées des fonctions de la forme :
	$\bullet x \mapsto \sqrt[n]{x} \ (n \in \mathbb{N}^* \ ; \ x \in \mathbb{R}_+^*)$
Calculer	$\bullet x \mapsto x^r \ (r \in \mathbb{Q} \ ; \ x \in \mathbb{R}_+^*)$
	$\bullet x \mapsto (u(x))^n \ (n \in \mathbb{N}^*)$
	$\bullet x \mapsto \sqrt{u(x)}$
	- la dérivée d'une fonction composée
	- graphiquement la bijection réciproque d'une bijection dans un repère orthonormé
	- une demi-tangente
	- graphiquement des fonctions du type :
	• $x \mapsto \sqrt[n]{x} \ (n \in \mathbb{N}^*; \ x \in \mathbb{R}_+^*)$
	$\bullet x \mapsto x^r (r \in \mathbb{Q} ; x \in \mathbb{R}_+^*)$
	- graphiquement une fonction du type :
	• $x \mapsto \cos(ax + b)$
	$-x \mapsto \sin(ax+b)$
Représenter	$-x \mapsto \tan(ax+b)$
representer	$-x \mapsto \frac{ax+b}{cx^2+dx+e}$
	$-x \mapsto \frac{ax^2 + bx + c}{dx^2 + ex + f}$
	$-x \mapsto \sqrt{ax+b}$
	$-x \mapsto \sqrt{ax^2 + bx + c}$
	- graphiquement des fonctions définies par raccordement
	- graphiquement une fonction comportant une valeur absolue
	- graphiquement une fonction comportant une racine carrée
Interpréter	- graphiquement la dérivabilité à droite (resp. à gauche) d'une fonction en un point x_0
Démontrer	- qu'une fonction composée est dérivable en un point x_0
	l'inégalité des accroissements finis pour :
Utiliser	démontrer une inégalité
	établir un encadrement
Traiter	 une situation faisant appel à la dérivabilité et à la représentation graphique des fonctions

Leçon 4: Primitives

Exemple de situation

Arrivée en classe elle demande à ses camarades de classe de l'aider à trouver la fonction v qui a pour dérivée l'accélération a.

Ensemble, ils décident de faire des recherches pour répondre à la préoccupation de leur camarade.

HABILETÉS	CONTENUS		
	- la définition d'une primitive d'une fonction continue		
	- les primitives des fonctions de référence		
	- les primitives de :		
Connaitre	• $u' + v'; \lambda u' (\lambda \in \mathbb{R})$		
	• $v' \times u'ov$; $\frac{u'}{\sqrt{u}}$; $u'cosu$; $u'sinu$; $\frac{u'}{u^r}$, $r \in \mathbb{Q} \setminus \{1\}$; $u' \times u^m$, $m \in \mathbb{Q} \setminus \{-1\}$		
	où u et v sont des fonctions dérivables		
	- l'ensemble des primitives d'une fonction continue		
	- les primitives d'une fonction en utilisant les primitives des fonctions de référence		
	- la primitive d'une fonction qui prend une valeur donnée en un point donné		
Déterminer	- les primitives d'une fonction du type :		
	• $u' + v', \lambda u' (\lambda \in \mathbb{R})$		
	• $v' \times u'ov; \frac{u'}{\sqrt{u}}; u'cosu; u'sinu; \frac{u'}{u^r}, r \in \mathbb{Q} \setminus \{1\}; u' \times u^m, m \in \mathbb{Q} \setminus \{-1\}$		
	où u et v sont des fonctions dérivables		
Justifier	- qu'une fonction est une primitive d'une fonction donnée		
Traiter	une situation faisant appel aux primitives de fonctions		

Leçon 5: Fonctions logarithmes

Exemple de situation d'apprentissage

Le médico-scolaire de ta commune organise une campagne de dépistage de la fièvre typhoïde dans ton établissement. Après avoir examiné n élèves pris au hasard, le médecin chef affirme que la probabilité d'avoir au moins un élève non atteint de la fièvre typhoïde dans cet établissement est donnée **par la formule** $1-0.325^n$.

Afin de sensibiliser davantage les élèves contre cette maladie, le chef de l'établissement veut connaître le nombre minimum d'élèves tel que la probabilité d'avoir au moins un élève non atteint de la fièvre typhoïde soit supérieure à 0,98. Il sollicite ta classe. Après plusieurs essais infructueux avec la calculatrice, vous posez le problème à votre professeur de Mathématique qui vous demande d'utiliser la touche \ln de votre calculatrice.

Désireux de répondre au chef d'établissement, chaque élève de la classe décide de faire des recherches sur ln.

HABILETÉS	CONTENUS		
	- la définition de la fonction logarithme népérien		
	- la définition de la fonction logarithme décimal		
	- la définition de la fonction logarithme de base a ; $a \in]0; 1[\cup]1; +\infty[$		
	- les propriétés algébriques de la fonction logarithme népérien		
	- la dérivée de la fonction logarithme népérien		
Connaitre	- le sens de variation de la fonction logarithme népérien		
	- la représentation graphique de la fonction logarithme népérien		
	- les propriétés algébriques de la fonction logarithme décimal		
	- les limites de référence de la fonction logarithme népérien		
	- les fonctions dérivées des fonctions du type : lno u et lno u		
	- les primitives des fonctions du type : $\frac{u'}{u}$		
	- la fonction logarithme népérien		
Noter	- la fonction logarithme décimal		
	- une fonction logarithme de base a ($a \in \mathbb{R}_+^* \setminus \{1\}$)		
	- des équations ou inéquations faisant intervenir la fonction ln		
Résoudre	- une équation de la forme $x^n=k$ $(k\in\mathbb{R}_+^*,n\in\mathbb{N}^*)$		
Troodaio	- une inéquation d'inconnue n de la forme $q^n \ge a$ ou $q^n \le a$ $(q \in \mathbb{R}_+^*; a \in \mathbb{R}_+^*, n \in \mathbb{N}^*)$		
D/4i	- les fonctions dérivées des fonctions du type : lno u et lno u		
Déterminer	- les primitives des fonctions du type : $\frac{u'}{u}$, où u est une fonction dérivable non nulle		
Représenter	- graphiquement les fonctions du type : lno u et lno u		
Representer	- graphiquement une fonction faisant intervenir la fonction logarithme népérien		
Utiliser	- les propriétés algébriques de la fonction logarithme népérien pour transformer une écriture		
	- les limites de référence pour calculer d'autres limites		
Étudier	- une fonction faisant intervenir la fonction logarithme népérien		
Traiter	- une situation faisant appel aux fonctions logarithmes		

Leçon 6 : Fonctions exponentielles et fonctions puissances

Exemple de situation d'apprentissage

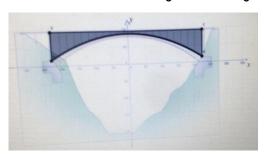
Pour son premier stage pratique dans l'infirmerie de ton établissement, un étudiant en médecine reçoit un élève malade. Il lui donne un médicament qu'il prend immédiatement.

La fonction qui modélise la masse M, en mg, de ce médicament encore présente dans son sang t heures après sa prise du médicament est la fonction telle que : M(t) = 50. $e^{-0.75 t}$.

En vue de prescrire si possible d'autres médicaments plus tard, le stagiaire désire visualiser cette masse M en fonction du temps t. Il sollicite ton professeur de Sciences de la vie et de la terre (SVT). Ce dernier associe ta classe au projet.

Motivés pour la cause, les élèves de la classe s'organisent et décident de faire des recherches **sur ces types de fonctions** et les représenter graphiquement.

HABILETÉS	CONTENUS		
	- la définition de la fonction exponentielle népérienne		
	- la définition d'une fonction exponentielle de base a , $(a \in \mathbb{R}_+^* \setminus \{1\})$		
	- la définition d'une fonction puissance d'exposant réel non nul		
	- les propriétés algébriques de la fonction exponentielle népérienne		
	- la dérivée de la fonction exponentielle népérienne		
	- le sens de variation de la fonction exponentielle népérienne		
	- la représentation graphique de la fonction exponentielle népérienne		
	- les propriétés algébriques de la fonction exponentielle de base a ($a \in \mathbb{R}_+^* \setminus \{1\}$)		
	- les propriétés algébriques de la fonction puissance d'exposant réel non nul		
Connaitre	- l'allure de la courbe représentative de la fonction : $x \mapsto x^{\alpha}$; $\alpha \neq 0$ suivant que $\alpha < 0$ ou $\alpha > 0$.		
	- l'allure de la courbe représentative de la fonction : $x \mapsto a^x$; $a \ne 1$ suivant que $0 < a < 1$ ou $a > 1$.		
	- les limites de référence de la fonction exponentielle népérienne		
	- les fonctions dérivées des fonctions du type :		
	$\exp \circ u \text{ et } u^{\alpha}, \alpha \in \mathbb{R}^*$		
	- les primitives des fonctions du type: $u'e^u$ et $u'u^m$, $m\in\mathbb{R}ackslash\{-1\}$		
	 les propriétés relatives à la croissance comparée des fonctions logarithme népérien, exponentielles et puissances 		
	- la fonction exponentielle népérienne		
Noter	- une fonction exponentielle de base $a\ (a\in\mathbb{R}_+^*\setminus\{1\})$		
	- une fonction puissance d'exposant réel non nul		
Résoudre	- des équations ou inéquations faisant intervenir des fonctions exponentielles		
Déterminer	- les dérivées des fonctions du type : $\exp \circ u$ et $u^{lpha}(lpha \in \mathbb{R}^*)$		
	- les primitives des fonctions du type: $u'e^u$; $u'u^m$, $m\in\mathbb{R}\backslash\{-1\}$		
	- graphiquement les fonctions du type : $\exp \circ u$ et u^{lpha} $(lpha \in \mathbb{R}^*)$		
Représenter	- graphiquement une fonction faisant intervenir la fonction exponentielle népérienne		
πορισσοικοι	- graphiquement une fonction faisant intervenir une fonction puissance d'exposant réel non nul		


Utiliser	 les propriétés algébriques de la fonction exponentielle népérienne pour transformer une écriture les limites de référence pour calculer d'autres limites les limites sur la croissance comparée pour calculer d'autres limites 	
Étudier	 une fonction faisant intervenir la fonction exponentielle népérienne une fonction faisant intervenir une fonction puissance d'exposant réel non nul 	
Traiter	- une situation faisant appel aux fonctions exponentielles et puissances	

Leçon 7 : Calcul intégral

Exemple de situation d'apprentissage

Au cours d'un exposé en Histoire - Géographie sur les infrastructures routières réalisées en chine, les élèves de la promotion Terminale d'un établissement secondaire apprennent que le pont de Zhijinghe à Hubei est un pont en arc qui a été achevé en 2009. Afin de le construire, les ingénieurs ont été amenés à étudier la résistance au vent.

Pour cela, ils ont calculé l'aire de la surface latérale grisée de la figure ci-dessous représentant un schéma de ce pont.

Emerveillés par ces informations, les élèves de la promotion Terminale décident de s'informer sur le calcul d'aire.

HABILETÉS	CONTENUS		
Connaitre	 la définition de l'intégrale d'une fonction continue la définition de la valeur moyenne d'une fonction continue sur un intervalle les propriétés de l'intégrale : linéarité signe de l'intégrale relation de Chasles inégalité et intégrale inégalité de la moyenne (les 2 formes) la technique de l'intégration par parties la technique du changement de variable affine 		
Noter	- une intégrale		

Calculer	 une intégrale en utilisant : les primitives des fonctions usuelles la relation de Chasles une intégration par parties un changement de variable affine une fonction du type u' × f' ∘ u une aire la valeur moyenne d'une fonction continue sur un intervalle une intégrale en utilisant la parité ou la périodicité d'une fonction 	
Déterminer	le signe d'une intégraleun encadrement d'une intégrale	
Interpréter	- graphiquement une intégrale	
Étudier	- les variations des fonctions du type : $x \mapsto \int_a^x f(t) dt$	
Représenter	- une allure d'une fonction du type : $x \mapsto \int_a^x f(t) dt$	
Traiter	- une situation faisant appel au calcul intégral	

Leçon 8: Suites numériques

Exemple de situation d'apprentissage

Dans le souci d'avoir suffisamment de revenus pour l'organisation des festivités de fin d'année, le président de la promotion terminale veut effectuer le placement de la somme de 300 000 F CFA qu'ils ont dans leur caisse dans une microfinance le 15 décembre 2017.

Avant la signature du contrat, le responsable lui propose deux options.

Option 1 : le capital placé est augmenté de 2500 F CFA à intérêts simples par mois

Option 2 : le capital placé augmentera de 5% de mois en mois pendant la durée du placement

Le budget de la manifestation étant de 400 000 F CFA, le président voudrait connaître l'option la plus avantageuse pour obtenir rapidement cette somme au septième mois de placement.

Forts de ces informations et voulant aider leur président, les élèves de la promotion terminale décident de faire des recherches et des calculs nécessaires.

HABILETÉS	CONTENUS
Connaitre	 la définition d'une suite : majorée minorée bornée la définition d'une suite : convergente divergente les propriétés sur la convergence des suites monotones : Toute suite croissante et majorée converge Toute suite décroissante et minorée converge les propriétés sur la convergence des suites numériques si (u_n)est une suite convergente vers a et f une fonction continue en a alors la suite v_n = f(u_n) converge vers f(a). soit f une fonction, D_f son ensemble et (u_n) une suite d'éléments de D_f.

	• des suites du type n^{α} - les théorèmes de comparaison - les propriétés sur les limites et comportements asymptotiques comparés des suites $(\ln n)$; (a^n) , $a>0$ et (n^{α}) , α réel			
Savoir	- mener un raisonnement par récurrence			
Reconnaître	- une suite géométrique convergente ou divergente - une suite du type n^{α} convergente ou divergente			
Démontrer	- qu'une suite est monotone - qu'une suite est majorée et/ou minorée - qu'une suite est convergente ou divergente			
Conjecturer	- le comportement d'une suite récurrente			
Déterminer	- la plus petite valeur de n telle que : $u_n \geq 10^p, p \in \mathbb{N}$ - la plus petite valeur de n telle que : $ u_n-l \leq 10^{-p}, p \in \mathbb{N}$ - la limite d'une suite			
Traduire	 une situation donnée à l'aide d'une suite : arithmétique géométrique arithmético - géometrique 			
Traiter	- une situation faisant appel aux suites numériques			

Leçon 9 : Équations différentielles

Exemple de situation d'apprentissage

Un professeur cultive une colonie bactérienne de 1 000 bactéries à l'instant 0 avec ses élèves.

Ils constatent alors que l'accroissement de la population est proportionnel à cette population et double en 4 heures. L'expérience consiste à déterminer le nombre de bactéries après 12 heures.

Pour cela, les élèves décident de faire des recherches afin de déterminer le nombre de bactéries après les 12 h.

HABILETÉS	CONTENUS
Connaitre	la définition d'une équation différentielleles solutions de chaque équation différentielle au programme
Identifier	- une équation différentielle
Justifier	- qu'une fonction est solution d'une équation différentielle

Résoudre	- une équation différentielle du type $f'+af=0$ (a réel) - une équation différentielle du type $f'+af=b$ (a et b réels et $a\neq 0$) - une équation différentielle du type $f''=0$ - une équation différentielle du type $f''+\omega^2f=0$ (ω réel non nul)
	- une équation différentielle du type $f'' - \omega^2 f = 0$ (ω réel non nul)
- la solution d'une équation différentielle du type $f' + af = b$ (a et b rough Déterminer - la solution d'une équation différentielle du type $f'' + mf = 0$ (m réel satisfaisant à des conditions initiales données.	
Traiter	- une situation faisant appel aux équations différentielles

COMPÉTENCE 2

Traiter des situations relatives à la modélisation d'un phénomène aléatoire, à l'organisation et au traitement des données.

THÈME 1: ORGANISATION ET TRAITEMENT DES DONNEÉS

Leçon 1 : Statistiques à deux variables

Exemple de situation d'apprentissage

Un riche entrepreneur offre une de ses entreprises à son fils. Celui-ci prend connaissance des chiffres d'affaires annuels de l'entreprise à travers le tableau ci-dessous.

Années	2013	2014	2015	2016	2017	2018
Rang (x_i)	1	2	3	4	5	6
Chiffre d'affaire en millions de franc CFA (y_i)	99	130	92	108	232	150

Soucieux de faire progresser l'entreprise, il souhaite avoir une prévision du chiffre d'affaires en 2030, Avec ces données, et après analyse complet de ce tableau, tu te rends dans le centre de documentation et d'information (CDI) de ton Lycée pour faire des recherches afin de répondre à la préoccupation du fils de l'entrepreneur.

HABILETÉS	CONTENUS	
	 la définition d'une série statistique à deux caractères la définition du point moyen 	
	- les tableaux de fréquences marginales	
Connaître	 la formule de la covariance la formule du coefficient de corrélation linéaire 	
	 la formule du coeπicient de correlation lineaire les formules de calcul de α et b (resp. α' et b') dans l'équation 	
	y = ax + b (resp. $x = a'y + b'$) d'une équation de la droite de	
	régression par la méthode des moindres carrées de y en x (resp. x en y).	
Établir	- les séries marginales à partir d'un tableau à double entrée représentant une	
	série statistique à deux caractères	
Représenter	- un nuage de points	
Placer	- le point moyen dans le nuage de points	
	- les coordonnées du point moyen	
Calculer	- la covariance	
	- le coefficient de corrélation linéaire	
Déterminer	- une équation d'une droite d'ajustement linéaire par la méthode des moindres	
Dotorrillior	carrés	
Interpréter	- le coefficient de corrélation linéaire	
Traiter	- une situation faisant appel aux séries statistiques à deux caractères	

THÈME 2: MODÉLISATION D'UN PHÉNOMÈNE ALÉATOIRE

Leçon 2 : Probabilité conditionnelle et variable aléatoire

Exemple de situation d'apprentissage

Pour l'organisation de la kermesse de leur Lycée, les élèves d'une classe de terminale désirent proposer le jeu suivant à un stand :

« Une urne contient trois boules rouges numérotées 100, 200 et 300 et deux boules noires numérotées 2 et 5, toutes indiscernables au toucher.

Les règles du jeu sont les suivantes :

Le joueur mise *X* francs CFA et tire successivement avec remise deux boules de l'urne. Si les deux boules tirées sont de même couleur, la partie est perdue. Sinon, le joueur remporte le montant en francs CFA égal au nombre obtenu par le produit des numéros apparus sur les boules tirées »

Pour ne pas être perdant, ces élèves souhaitent déterminer la mise minimale du joueur pour que le jeu leur soit avantageux.

Ensemble, ils s'organisent pour faire des recherches et des calculs nécessaires.

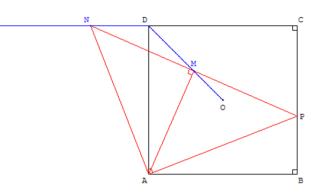
HABILETÉS	CONTENUS
Connaître	 la définition d'une probabilité conditionnelle un système complet d'évènements la formule des probabilités totales la définition d'une variable aléatoire la définition d'une loi de probabilité, la définition d'une fonction de répartition, la définition de l'espérance mathématique, de la variance et de l'écart-type la définition d'une épreuve de Bernoulli la définition d'un schéma de Bernoulli la définition de la loi binomiale de paramètres n et p la propriété relative à l'espérance mathématique d'une variable aléatoire suivant une loi binomiale B(n, p) la propriété relative à la variance d'une variable aléatoire suivant une loi binomiale B(n, p)
Noter	- une probabilité conditionnelle : $P(A/B)$ ou $P_B(A)$
Calculer	 la probabilité d'un évènement la probabilité d'obtenir k succès dans une suite de n épreuves de Bernoulli (0 ≤ k ≤ n) l'espérance mathématique, la variance et l'écart type d'une variable aléatoire donnée
Justifier	- que deux événements sont indépendants ou non
Déterminer	 la loi de probabilité d'une variable aléatoire donnée la fonction de répartition d'une variable aléatoire donnée
Construire	 un arbre pondéré la représentation graphique de la fonction de répartition d'une variable aléatoire donnée
Traiter	- une situation faisant appel aux probabilités

COMPÉTENCE 3

Traiter une situation relative à la géométrie du plan, à la géométrie de l'espace et aux transformations du plan

THÈME 1 : GÉOMETRIE DU PLAN

Leçon 1 : Nombres complexes et géométrie du plan


Exemple de situation d'apprentissage

Le système ci-contre permet de soulever une charge placée en M jusqu'au point D.

Il est ramené à un plan rapporté au repère orthonormal direct $(A, \overrightarrow{AB}; \overrightarrow{AD})$ où ABCD est un carré de centre O et P un point se déplaçant sur [BC].

On appelle N l'image de P par la rotation de centre A et d'angle $\frac{\pi}{2}$ et M le milieu de [NP].

Pour vérifier l'efficacité du système, les élèves d'une classe de terminale scientifique décident de déterminer à l'aide des nombres complexes les lieux géométriques des points N et M lorsque P décrit $\lceil BC \rceil$.

HABILETES	CONTENUS
Connaître	 la définition d'une similitude directe les éléments caractéristiques d'une similitude directe les formules relatives à l'écriture complexe : d'une translation d'une symétrie centrale de la symétrie orthogonale par rapport à l'axe des abscisses de la symétrie orthogonale par rapport à l'axe des ordonnées d'une homothétie de centre Ω et de rapport λ d'une rotation de centre Ω et d'angle θ d'une similitude directe les caractérisations complexes : des points alignés des points cocycliques de deux droites parallèles de deux droites perpendiculaires

	- l'écriture complexe d'une :
Reconnaître	 translation symétrie centrale symétrie orthogonale par rapport à l'un des axes du repère homothétie rotation similitude directe
Déterminer	 - l'écriture complexe d'une : - translation - symétrie centrale - symétrie orthogonale par rapport à l'axe des abscisses - symétrie orthogonale par rapport à l'axe des ordonnées - homothétie de centre Ω et de rapport k - rotation de centre Ω et d'angle θ - similitude directe - l'image d'un point, d'un segment, d'une droite, d'un cercle, d'un angle, par une transformation dont on connait l'écriture complexe - les éléments caractéristiques, connaissant son écriture complexe, d'une : - translation - symétrie centrale - symétrie orthogonale par rapport à un axe du repère - homothétie - rotation de centre Ω - similitude directe - des lieux géométriques à l'aide des nombres complexes - la nature d'un triangle, d'un quadrilatère en utilisant les caractérisations complexes
Construire	- l'image d'un point par une similitude directe - des lieux géométriques
Démontrer	- une propriété géométrique (points alignés, points cocycliques, angle droit,) en utilisant les caractérisations complexes
Traiter	- une situation faisant appel aux applications géométriques des nombres complexes

GUIDE D'EXECUTION DES PROGRAMMES MATHÉMATIQUES – TERMINALE D

- I. PROGRESSION (se conformer à la progression en vigueur)
- II. PROPOSITIONS DE CONSIGNES, SUGGESTIONS PÉDAGOGIQUES ET MOYENS

COMPÉTENCE 1

THÈME: CALCULS ALGÉBRIQUES

Leçon 1: Nombres complexes

CONTENUS	CONSIGNES POUR	TECHNIQUES	SUPPORTS
	CONDUIRE LES ACTIVITÉS	PÉDAGOGIQUES	DIDACTIQUES
 Forme algébrique d'un nombre complexe Partie réelle (Re) Partie imaginaire (Im) Conjugué d'un nombre complexe Somme, produit, quotient de deux nombres complexes Formule du binôme Égalité de deux nombres complexes Affixe d'un point, d'un vecteur Point image et vecteur image d'un nombre complexe Module d'un nombre complexe Module du produit, de l'inverse, du quotient et de la puissance entière de nombres complexes Forme trigonométrique Argument d'un nombre complexe non nul Argument du produit, de l'inverse, du quotient et de la puissance entière de nombres complexe non nuls Forme exponentielle Nombre complexe et trigonométrie 	 Les nombres complexes prolongent R et offre un domaine riche d'activités numérique. Il ne s'agit pas de faire une théorie sur les nombres complexes mais de les utiliser pour résoudre des problèmes. On s'interdira d'utiliser le symbole √ avec un nombre complexe non réel positif. L'écriture exponentielle sera utilisée le plus tôt possible afin d'alléger les expressions dans les calculs. À titre d'exercice, on pourra faire démontrer aux élèves que : A, B, C et D étant quatre points distincts d'affixes respectives a, b, c et d, A, B, C et D sont cocycliques ou alignés si et seulement si 	-Travail en groupe - Travail individuel - Enquête - Brainstorming	 Manuel Internet Revues Média Instruments de géométrie

 Formule de Moivre, formules d'Euler Equation dans ℂ Racines carrées d'un nombre complexe non nul Équation du second degré dans ℂ Racine nième d'un nombre complexe non nul Racines n-ièmes de l'unité; interprétation graphique Nombre complexe et géométrie arg (zA-ZB) / ZC-ZD) est une mesure de (DC, BA) Caractérisation complexe d'un cercle Caractérisation complexe d'une droite 	$arg\left(rac{z_B-z_C}{z_B-z_A} ight) = arg\left(rac{z_D-z_C}{z_D-z_A} ight) + k\pi$ avec k entier relatif. - Pour la linéarisation des puissances de cosinus et sinus, on se limitera à des exposants inférieurs ou égaux à 5. Les formules de trigonométrie obtenues ne sont pas à apprendre par cœur. - La linéarisation des fonctions trigonométriques sera réinvestie dans le calcul intégral.		
--	---	--	--

THÈME 2: FONCTIONS

Leçon 1 : Limites et continuité

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
 Limites Limite d'une fonction composée. Limite d'une fonction monotone sur un intervalle ouvert Branches paraboliques de direction (OI) ou (OJ) dans un repère (O,I,J) Prolongement par continuité Fonctions continues sur un intervalle Opérations, composée (propriétés admises) 	 La plupart des propriétés ont été abordé en classe de première. Ces propriétés tout comme les techniques des calculs pour lever l'indétermination, ne doivent pas faire l'objet d'un traitement théorique. Elles seront mises assez rapidement en œuvre dans des exercices dont le niveau de technicité et l'abondance doivent rester très raisonnable car elles seront réinvesties tout au long de l'année dans les études de fonctions. 	- Travail en groupe - Travail individuel - Enquête - Brainstorming - Discussion dirigée	- Manuel - Internet - Revues - Média - Instruments de géométrie
- Image d'un intervalle.	- La propriété sur la limite d'une fonction monotone sur un intervalle		

- Théorème des valeurs intermédiaires
- Fonction continue et strictement monotone sur un intervalle

Propriété 1: Si f est une fonction continue et strictement monotone sur un intervalle , alors f est une bijection de I sur f(I). Sa bijection réciproque f^{-1} est continue et de même sens de variation que la fonction f.

Propriété 2: Si f est une fonction continue et strictement monotone sur un intervalle I, alors pour tout m de (I), l'équation f(x) = m admet une unique solution dans I.

Corollaire: Soit f une fonction continue et strictement monotone sur [a, b]. Si f(a) et f(b) sont de signes contraires, alors l'équation f(x) = 0 admet une unique solution dans l'intervalle ouvert [a, b[.

- Valeur approchée de la solution d'une équation
- Méthode de balayage
- Méthode de dichotomie
- Racine n -ième d'un nombre positif
- Puissance d'exposant rationnel

- ouvert sera utilisée dans les suites et les fonctions définies par intégrale.
- L'étude générale des branches infinies est hors programme.
- Les branches paraboliques selon les axes coordonnés sont les seules directions asymptotiques à connaître.
- Dans le cas d'une asymptote oblique, une équation est fournie à l'élève.
- On introduira la continuité sur un intervalle. Cette définition permet l'usage de deux théorèmes importants concernant l'existence d'une bijection réciproque et la propriété des « valeurs intermédiaire ». Notons que la forme générale de cette dernière propriété est hors programme.
- Pour déterminer la limite d'une fonction composée on peut utiliser un changement de variable.

Leçon 2 : Dérivabilité et étude de fonctions

CONTENUS	CONSIGNES POUR	TECHNIQUES	SUPPORTS
	CONDUIRE LES	PÉDAGOGIQUES	DIDACTIQUES
	ACTIVITÉS		

• Dérivabilité à gauche, dérivabilité à droite en un point

- Nombre dérivé à droite (à gauche) d'une fonction en un point.
- Demi- tangente.
- Dérivabilité sur un intervalle
- Définition
- Propriété : Toute fonction dérivable sur un intervalle est continue sur cet intervalle.

• Fonctions dérivées.

- Dérivées successives ; nouvelles notations

$$\frac{df}{dx}$$
; $\frac{d^2f}{dx^2}$;...; $\frac{d^nf}{dx^n}$ $(n \in \mathbb{N}^*)$

- Dérivée d'une fonction composée (admis); application à la dérivation des fonctions de la forme

$$(u)^n \ (n \in \mathbb{Z}^*) \ U^{\alpha} \ (\alpha \in \mathbb{Q}^*), \sqrt{U}.$$

- Existence de la dérivée d'une fonction réciproque (admis), formule de la dérivée de la fonction réciproque.
- Inégalité des accroissements finis (2 formes).

Etude et représentation graphique de fonctions

- Représentation graphique des fonctions:
- *; $x \mapsto \sqrt[n]{x} (n \in \mathbb{N}^*)$
- * $x \mapsto x^r (r \in \mathbb{Q}, x \in \mathbb{R}^*_+)$
 - $-x \mapsto \cos(ax+b)$
 - $-x \mapsto \sin(ax+b)$
 - $-x \mapsto \tan(ax + b)$
 - $-x \mapsto \frac{ax+b}{cx^2+dx+e}$ $-x \mapsto \frac{ax^2+bx+c}{dx^2+ex+f}$

 - $-x \mapsto \sqrt{ax+b}$
 - $x \mapsto \sqrt{ax^2 + bx + c}$
- définies par raccordement
- comportant une valeur absolue
- comportant une racine carrée

- On ne demandera pas de justifier la dérivabilité d'une fonction sur un intervalle lors des évaluations.
- On se limitera à l'utilisation de la formule donnant la dérivée d'une fonction réciproque uniquement en un point x_0 et cela pour des exemples ne présentant pas de difficulté particulière.
- Les fonctions qu'on peut étudier dans ce chapitre sont en nombre infini. Il sera bon de bien sélectionner celles qui seront étudiées pour obtenir un éventail aussi complet que possible de situations différentes.

- Travail en groupe
- Travail individuel
- Enquête
- Brainstorming
- Discussion dirigée

- -Manuel
- -Internet
- -Revues -Média
- -Instruments de géométrie

Leçon 3 : Primitives

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
Définition d'une		- Travail en	- Manuel
primitive		groupe	- Internet
Existence de primitive d'une fonction continue sur un intervalle	 On introduira les primitives comme opération inverse des dérivées. 	- Travail individuel - Enquête	- Revues - Média
Ensemble des primitives d'une fonction continue	- On fera établir le tableau des primitives de référence. On fera ensuite fonctionner abondamment les tableaux	- Brainstorming	
Unicité de la primitive d'une fonction prenant une valeur donnée en un point donné	des primitives des fonctions de référence, ce qui permettra de la mémoriser, avant d'aborder des exemples complexes.	- Discussion dirigée	
Primitives des fonctions de référence	 On pourra faire remarquer aux élèves que pour vérifier un calcul de primitive, il suffit de dériver la fonction trouvée. 		
Primitive de	- Les différentes techniques pour		
$u' + v', \lambda u' (\lambda \in \mathbb{R})$ $v' \times u'ov; \frac{u'}{\sqrt{u}};$ $u'cosu; u'sinu;$	déterminer des primitives (décomposition en élément simples, linéarisation, utilisation des formules trigonométriques) doivent être guidées.		
$\frac{u'}{u^r}, r \in \mathbb{Q} \setminus \{1\};$ $u' \times u^m, m \in \mathbb{Q} \setminus \{-1\}$ où u et v sont des fonctions dérivables			

Leçon 4 : Fonctions logarithmes

CONTENUS	CONSIGNES POUR CONDUIRE LES	TECHNIQUES	SUPPORTS
	ACTIVITÉS	PÉDAGOGIQUES	DIDACTIQUES
 Fonction logarithme népérien Définition, notation propriétés, représentation graphique Limites de référence 	La manière d'introduire la fonction logarithme népérien n'est pas imposée. Il y a plusieurs approches possibles :	Travail en groupeTravail individuelEnquête	ManuelInternetRevuesMédiaInstruments de géométrie

- Primitives de $\frac{u'}{u}$	- L'usage de la calculatrice renforce les	
u	possibilités d'étude de cette notion aussi	
	bien pour effectuer des calculs que pour	
Logarithme décimal	permettre de conjecturer des résultats.	Drainatarmina
- Définition	, , , , , , , , , , , , , , , , , , ,	- Brainstorming
- Notation	- La représentation graphique de la	
	fonction $x \mapsto \ln x$ doit être connue des	- Discussion
 Logarithme de base a 	élèves car elle permet de retrouver de	dirigée
$a \in]0;1[\cup]1;+\infty[$	nombreux résultats (ensemble de	diligot
- Définition	définition, variation, signe, limites,	
- Notation	valeurs particulière, branches	
Dérivée de fonction du	paraboliques).	
type: $\ln u$ et $\ln u $	La bijactivité de la fonction la garithma	
type: In a et in a u	- La bijectivité de la fonction logarithme	
• Étude et	népérien permet d'introduire	
	le nombre <i>e</i> .	
représentation graphique		
des fonctions	- Aucune étude des propriétés de la	
- du type :	fonction logarithme décimal ne sera faite	
$\ln u$ et $\ln u $	mais on l'utilisera dans les exercices.	
- comportant la fonction In		
	- La croissance « lente » de la fonction	
	logarithme pourra être étayée avec des	
	calculs numériques. Ce résultat sera	
	réinvesti lors de l'étude des croissances	
	comparée des fonctions logarithmes	
	népérien, exponentielle et puissance.	

Leçon 5 : Fonctions exponentielles et fonctions puissances

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
 Fonction exponentielle népérienne Définition, propriété, notation, représentation graphique Limites de référence Primitives de u'eu Définition de la 	 La fonction exponentielle népérienne est définie comme la bijection réciproque de la fonction ln. Ses propriétés se déduisent naturellement de celles de la fonction ln. L'étude des fonctions exponentielle de base a et des fonctions puissances découlent directement de l'étude de la fonction exponentielle népérienne. 	Travail en groupeTravail individuelEnquête	 Manuel Internet Revues Média Instruments de géométrie
fonction exponentielle de base a $(a \in \mathbb{R}_+^* \setminus \{1\})$ • Définition de la fonction puissance d'exposant réel non nul	 On habituera les élèves à retrouver les limites et les dérivées des fonctions exponentielles de base a et puissance à partir des définitions de ces fonctions. l'étude générale des fonctions exponentielles de base a n'est 	- Brainstorming - Discussion dirigée	

• Primitives de $u'u^m$
$(\boldsymbol{m} \in \mathbb{R} \setminus \{1\})$

- Croissance comparée des fonctions logarithme népérien, exponentielle népérienne et puissance
- ullet Dérivées de fonctions du type $\exp \circ u$ et $u^{lpha}, lpha \in \mathbb{R}^*$
- Etude et représentation graphique des fonctions
- du type $\exp \circ u$ et $u^{lpha}, (lpha \in \mathbb{R}^*)$
- Comportant exponentielle
- Comportant fonction puissance

pas à traiter de manière théorique mais pourra être abordée sur quelques exemples (0 < a < 1 et a > 1). Il en est de même pour les fonctions $x \mapsto x^{\alpha}, \alpha \in \mathbb{R}^*$ ce sera l'occasion d'étudier des cas correspondant à des valeurs variées de α et de faire le lien avec les notations $\sqrt[n]{x}$ et $x^{\frac{p}{q}}$.

- les fonctions puissances $x \mapsto x^{\alpha}$ sont définies sur $]0; +\infty[$ mais, pour certaines valeur de α ($\alpha \in \mathbb{Z}$, $\alpha = \frac{1}{2}$, etc), elles peuvent être définies sur un ensemble contenant $]0; +\infty[$ (par exemple \mathbb{R} , \mathbb{R}^* ou $[0; +\infty[$).

Leçon 6 : Calcul intégral

CONTENUS	CONSIGNES POUR	TECHNIQUES	SUPPORTS
	CONDUIRE LES ACTIVITÉS	PÉDAGOGIQUES	DIDACTIQUES
 Intégrale d'une fonction continue Définition Conséquences immédiates Propriété La fonction x → ∫_a^x f(t) dt est l'unique primitive de f qui s'annule en a. Interprétation graphique de l'intégrale d'une fonction continue positive. Propriétés de l'intégrale Linéarité; Relation de Chasles; Positivité; Comparaison Si f ≤ g sur [a, b] alors ∫_a^b f(t) dt ≤ ∫_a^b g(t) dt Inégalité de la moyenne Si m ≤ f ≤ M sur [a, b] alors m(b - a) ≤ ∫_a^x f(t) dt ≤ M(b - a) Valeur moyenne d'une fonction Techniques de calcul d'une intégrale Utilisation de primitives Intégration par parties Changement de variable affine Intégration de fonctions paires, impaires et périodiques 	 Il faut faire le lien entre intégrale et aire dès l'introduction des intégrales ou tout de suite après la définition. Cela permet alors d'illustrer graphiquement les propriétés de l'intégrale. Lors d'une évaluation, si le calcul d'une intégrale utilise une intégration par parties, l'énoncé devra l'indiquer. À l'occasion d'un calcul d'aire, l'unité attendue doit être précisée dans l'énoncé. On pourra calculer sur des exemples, une valeur approchée d'une intégrale par la méthode des rectangles. La méthode des rectangles n'est pas à évaluer. 	- Travail en groupe - Travail individuel - Enquête - Brainstorming - Discussion dirigée	- Manuel - Internet - Revues - Média - Instruments de géométrie

Application au calcul d'aire.		
• Étude de fonction du type :		
$x \mapsto \int_a^x f(t) dt$		

Leçon 7 : Suites Numériques

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
Suites majorées, minorées	- On pourra s'appuyer sur l'utilisation de la calculatrice et		
• Suites monotones	des graphiques pour introduire la notion de convergence d'une		
Suites convergentes	suite. On peut faire comprendre aux élèves :		
Notion de convergence	> que pour certaines suites, tous		
Unicité de la limite	les termes à partir d'un certain rang, sont aussi proche que		
• Si f est une fonction numérique telle que	l'on veut d'un nombre réel a .		
$\lim_{x \to +\infty} f(x) = l \text{ alors la}$ suite définie par $u_n = f(n)$ converge vers l	que pour d'autres suites, les termes à partir d'un certain rang, prennent des valeurs aussi grandes que l'on veut		
 Soit f une fonction continue sur un intervalle K et (u_n) une suite à valeurs dans K, définie par la formule de récurrence 	 qu'il existe des suites qui ont des comportements irréguliers. 		
$u_{n+1} = f(u_n)$. Si la suite (u_n) est convergente alors sa limite est une solution de l'équation : $x \in K, f(x) = x$	- L'étude des suites sera étroitement liée à celle des fonctions. Le sens de variation ou les propriétés de certaines fonctions permettront de conclure sur le comportement des suites.		
 Convergence des suites monotones Toute suite croissante et majorée converge Toute suite décroissante et minorée converge Convergence des suites géométriques 	- Dans l'étude d'une suite récurrente, on pourra s'appuyer, quand le contexte le permettra, sur la représentation graphique pour conjecturer le comportement de la suite.		

Suites divergentes Toute suite croissante et non majorée a pour limite +∞ Toute suite décroissante et non minorée a pour limite −∞	- La notion de suite majorée et suite minorée sont définies essentiellement dans le but de donner des outils complémentaires pour la convergence des suites. Ainsi, il ne sera pas nécessaire de	
	multiplier les exercices et les méthodes autour de ces notions. - Le raisonnement par récurrence sera suggéré dans l'énoncé des exercices et des évaluations, lorsque son utilisation est indispensable.	

Leçon 8 : Équations différentielles

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
 Equation différentielle du type : 	 On évitera la théorie sur les équations différentielles. Les différents types d'équations seront introduits à partir d'exemple 	- Travail en groupe - Travail individuel	ManuelInternetRevuesMédia
$f'' = 0$ $f'' + \omega^2 f = 0$ $f'' - \omega^2 f = 0$	simple tirés de la physique, de la chimie, de la biologie, et de la vie courante. - Les élèves de terminale rencontrent	- Enquête	- Instruments de géométrie
	en cours de sciences physiques les équations différentielles notamment, un des intérêts immédiats du cours de mathématiques sera la justification de la nature des solutions de ces équations différentielles.	- Brainstorming - Discussion dirigée	
	 On guidera l'élève dans la résolution des équations différentielles différentes de celles au programme. 		

COMPÉTENCE 2

THÈME 1: ORGANISATION ET TRAITEMENT DES DONNÉES

Leçon : Statistiques à deux variables

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITÉS	TECHNIQUES PÉDAGOGIQUES	SUPPORTS DIDACTIQUES
Tableau statistique à double entrée	On se servira d'une activité d'introduction pour rappeler le vocabulaire, les calculs de statistique à une variable, et le sens des notions de moyenne et de variance de séries simples.	- Travail en groupe - Travail individuel	- Manuel - Internet - Revues - Média - Instruments
Tableaux de fréquences marginales	- On veillera à une bonne compréhension des éléments du tableau.	- Enquête	de géométrie
	- L'interprétation des résultats fera l'objet d'une activité avec les élèves.		
Nuages de pointsPoint moyen	- Dans la rédaction des copies les élèves devront :	- Brainstorming	
Ajustement linéaire par la méthode des moindres carrés	 soit faire apparaitre explicitement les formules, puis leur application numérique; soit faire les tableaux de calculs avec les valeurs des séries. 	- Discussion dirigée	
- Covariance	- Les fonctions statistiques de la		
 Droite de régression Coefficient de corrélation linéaire 	calculatrice serviront à vérifier les résultats. - Les énoncés devront indiquer précisément la façon dont on arrondi les résultats.		

THÈME 2: MODÉLISATION D'UN PHÉNOMÈNE ALÉATOIRE

Leçon : Probabilité conditionnelle et variable aléatoire

CONTENUS	CONSIGNES POUR CONDUIRE LES	TECHNIQUES	SUPPORTS
	ACTIVITÉS	PÉDAGOGIQUES	DIDACTIQUES
•	- On pourra introduire la notion de probabilité conditionnelle à l'aide des	- Travail en groupe	ManuelInternetRevues

Programme de Terminale D

Page **36** sur **42**

		T	
Probabilité	arbres de choix ou des tableaux à	- Travail	- Média
conditionnelle	double entrée.	individuel	
- Définition			- Instruments
$- P(A/B) = \frac{P(A \cap B)}{P(B)}$	- On fera remarquer aux élèves qu'une	- Enquête	de géométrie
` ' '	variable aléatoire est en réalité une	Liiquete	
- Evènements	fonction.		
indépendants			
	- Les formules générales sont données		
Variable aléatoire	par comparaison avec leur équivalent	- Brainstorming	
 Définition d'une variable 	en statistique. Par exemple on	· ·	
aléatoire	remarquera le lien entre moyenne et	- Discussion	
 Loi de probabilité 	espérance mathématique. Pour les	dirigée	
 Fonction de répartition 	calculs, on privilégiera l'usage de		
- Espérance	tableau.		
mathématique			
 Variance ; écart-type 	- On habituera les élèves à reconnaître		
	une situation où la loi binomiale doit		
Loi Binomiale	être appliquée (épreuve répétés		
 Probabilité d'obtenir k 	identiques indépendantes).		
succès dans une suite	1		
de n épreuves de			
Bernoulli $(n \le k \le n)$			
-E(X) = np			
-V(X) = np(1-p)			

COMPÉTENCE 3

THÈME 1 : GÉOMÉTRIE DU PLAN

Leçon : Nombres complexes et géométrie du plan

CONTENUS	CONSIGNES POUR CONDUIRE	TECHNIQUES	SUPPORTS
	LES ACTIVITÉS	PÉDAGOGIQUES	DIDACTIQUES
 Caractérisations complexes Des points alignés Des triangles particuliers Des points cocycliques De droites parallèles De droites perpendiculaires Similitude directe Définition 	 Propriétés à démontrer : Etablir l'écriture complexe de chacune des transformations étudiées Cette leçon aide à résoudre les problèmes de géométrie en utilisant un outil analytique Dans la résolution d'un problème, l'élève sera entrainé à utiliser l'outil complexe, l'expression analytique 	- Travail en groupe - Travail individuel Enquête - Brainstorming	 Manuel Internet Revues Média Instruments de géométrie

Écriture complexe de transformations du plan	ou l'outil géométrique selon les nécessités.	
TranslationSymétrie centraleSymétries orthogonales par rapport aux axes du	- Dans les contrôles continus, l'enseignant pourra préciser l'outil qu'il souhaite privilégier	
repère	NB: On pourra faire remarquer aux	
 Homothétie de centre Ω et de rapport λ; Rotation de centre Ω et 	élèves qu'une homothétie de rapport k est une similitude directe de rapport $ k $	
	I was an employed that	

d'angle θ

Similitude directe

EXEMPLE DE FICHE DE LEÇON

Discipline: Mathématique

Classe: Tle D
Compétence: 1
Thème 2: Fonctions

Leçon 8: Équations différentielles

Séances: 1/4 Durée: 55 min

Matériel: Calculatrice, manuel

Pré- requis : Primitive – Focntion logarithme népérien - Fonction exponentielle népérienne

HABILETÉS	CONTENUS
Connaitre	 la définition d'une équation différentielle les solutions de chaque équation différentielle au programme
Identifier	- une équation différentielle
Justifier	- qu'une fonction est solution d'une équation différentielle
Résoudre	- une équation différentielle du type f ' + a f = 0 (a réel) - une équation différentielle du type f ' + a f = b (a et b réels et $a \neq 0$) - une équation différentielle du type f '' = 0 - une équation différentielle du type f '' + $\omega^2 f$ = 0 (ω réel non nul) - une équation différentielle du type f '' - $\omega^2 f$ = 0 (ω réel non nul)
Déterminer	 la solution d'une équation différentielle du type f' + a f = b (a et b réels et a ≠ 0) satisfaisant à une condition initiale donnée la solution d'une équation différentielle du type f" + m f = 0 (m réel) satisfaisant à des conditions initiales données.
Traiter	- une situation faisant appel aux équations différentielles

Exemple de situation :

Lors d'une campagne innovante du Fonds des Nations Unies pour la population intitulée « 7 Milliards d'Actions », qui mettait l'accent sur les défis, les possibilités et les actions nécessaires à notre avenir commun sur la Terre, des élèves de la promotion terminale d'un lycée ont appris que :

- plus de la moitié de la croissance démographique dans le monde d'ici à 2050 aura lieu en Afrique ;
- la population d'Afrique subsaharienne, par exemple, devrait doubler d'ici à 2050 ;
- selon les projections, la population mondiale devrait augmenter de 2 milliards de personnes au cours des trente prochaines années, passant de 7,7 milliards actuellement à 9,7 milliards en 2050 ;
- la population d'un pays était de 4, 75 millions d'habitants en 1990 et de 5,5 millions d'habitants en 1995. Etonnés du boum démographique de ce pays, ces élèves décident de faire des calculs afin de déterminer l'année où la population de ce pays atteindra 20 millions d'habitants, si on suppose que la vitesse d'accroissement de la population est proportionnelle au nombre d'habitants. Ils désignent par f(t) le nombre de millions d'habitants à l'instant t.

Classe: T^{le} D Compétence : 1 Thème 2: Fonctions

Leçon 8: Équations différentielles

Séances: 1/4 **Durée:** 55 min

Matériel: Calculatrice, manuel

Pré- requis : Primitive – Focntion logarithme népérien - Fonction exponentielle népérienne

HABILETÉS	CONTENUS	
Connaître	- la définition d'une équation différentielle	
	- les solutions des équations différentielles du type : $f' = af$	
Résoudre	- des équations différentielles du type : $f' = af$	

Moment didactique et durée	Stratégies pédagogiques	Activités du professeur	Activités des apprenants	Trace écrite
Présentation (10 mn)				
-Prérequis - Découverte de la situation d'apprentissag e et son exploitation	Travail individuel	-Présentation de la situation - Lecture de la situation et décodage (explication éventuelle des mots difficiles) -Questions relatives au contexte , à la circonstance et à la tâche .	-Lecture silencieuse par la classe, puis à haute voix par un élève. -Les élèves répondent aux questions faisant ressortir le contexte, la circonstance et la tâche.	
Développeme nt (30 mn)		-Mise à la		1- Notion d'équation différentielle Définition : On appelle
-Installation des habiletés /cont enus par la résolution de		disposition des élèves de l'activité de découverte (relative à la		Définition : On appelle équation différentielle, toute équation ayant pour inconnue une fonction et dans laquelle figure au moins une des dérivées

12 - 41-144 1-	1/6:		
l'activité de découverte. - Trace écrite	définition d'une équation différentielle) -Temps de recherche. -Gestion des réponses des élèves et synthèse de l'activité -Trace écrite	-Réponses des élèves	successives de la fonction inconnue. Exemples: $f'' - 3f' + 11f = 0$ $7f' + 9f = x^2 - 2x - 6$ 2- Équations différentielles du type: $f' = af$ 2.1 Vocabulaire L'équation $f' = af$ est dite: - du 1 ^{er} ordre parce qu'y figure seulement la dérivée première de, - à coefficients constants car les coefficients de f et de f' qui sont respectivement a et -1 sont des constantes. 2-2 Résolution Propriété: Les solutions de l'équation différentielle $f' = af$ ($a \neq 0$) sont les fonctions f_k de \mathbb{R} vers \mathbb{R} définies par: $f_k(x) = ke^{ax}$, où k est un réel quelconque. Démonstration: $f' = af \Leftrightarrow \forall x \in \mathbb{R}, f'(x) = af(x) \Leftrightarrow \forall x \in \mathbb{R}, f'(x) - af(x) = 0 \Leftrightarrow \forall x \in \mathbb{R}, [f'(x) - af(x)]e^{-ax} = 0 \Leftrightarrow \forall x \in \mathbb{R}, [f(x) e^{-ax}]' = 0 \Leftrightarrow \forall x \in \mathbb{R}, f(x) = ke^{ax}, k \in \mathbb{R}$ $\Leftrightarrow \forall x \in \mathbb{R}, f(x) = ke^{ax}, k \in \mathbb{R}$
			2-3 <u>Solution soumise une</u> condition

	Propriété: Pour tout couple de réels (x_0, y_0) , l'équation $f' = af$ admet une et une seule solution f telle que $f(x_0) = y_0$
	Démonstration: Soit f_k une solution de l'équation $f' = af$. On a: $f_k(x_0) = y_0 \Leftrightarrow ke^{ax_0} = y_0$ $\Leftrightarrow k = y_0e^{-ax_0}$ cette valeur de k étant unique, on en déduit que la solution f_k est unique.

Évaluation (10	-	Exercice1	Exercice1	
mn)	Recherche	Résous les	1) Les solutions sont	
Exercice de	Individuel -	équations différentielles	les fonctions f_k	
fixation	Expositio	suivantes:	définies sur ℝ par	
Renforcement	n de quelques résultats -échange entre les élèves -Synthèse	survantes: $1) f' = 5f$ $2) f' + 2f = 0$ $3)$ $7f' - 3f = 0$ Exercice 2 Détermine la solution de l'équation $-5f' + 2f = 0$ vérifiant $f(1) = -1$	definites sur \mathbb{R} par $f_k(x) = ke^{5x}, k \in \mathbb{R}$ 2) Les solutions sont les fonctions f_k définites sur \mathbb{R} par $f_k(x) = ke^{-2x}, k \in \mathbb{R}$ 3) Les solutions sont les fonctions f_k définites sur \mathbb{R} , par $f_k(x) = ke^{\frac{3}{7}x}, k \in \mathbb{R}$	
	Travail à			
	faire à la maison	Exercice n°page.	La solution f est définie sur \mathbb{R} par $f(x) = ke^{\frac{2}{5}x}, k \in \mathbb{R}$ $f(1) = -1$ $ke^{\frac{2}{5}x} = -1$ $k = -e^{-\frac{2}{5}}$ Donc $f(x) = -e^{-\frac{2}{5}}e^{\frac{2}{5}x-\frac{2}{5}}$.	